

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	kTBS Bench 0.1 documentation

Welcome to kTBS Bench’s documentation!

Contents:

	Reports
	Benchmarking insert into triple stores

	Benchmarking query capabilities for triple-stores

	Discarding store in the benchmark

	Notes
	Sleepycat memory error

	Load RDF files in triple stores

	Granting SPARQL privileges with Virtuoso

See also

The foundation of these benchmarks: kTBS Bench Manager [https://ktbs-bench-manager.readthedocs.org/en/latest/].

Some useful decorators that we rely on: sutils [https://sutils.readthedocs.org/en/latest/].

Development files:

	bench.py: Automating benchmarks

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

Reports

	Benchmarking insert into triple stores
	The kTBS structure

	In search of a good bench

	Benchmarking triples insertion
	What we have: stores and triples

	What we found
	Time measurement

	Bulk inserts are better than iterative inserts

	Bug in rdflib-sqlachemy: addN() don’t write anything

	Slow bulk insertion with rdflib-sqlachemy

	Cannot insert blank nodes in sparqlstores

	Insert time rises with respect to store size?

	Benchmarking query capabilities for triple-stores
	Context

	Results
	Exploration

	Changing perspective
	Comments on f(number of graphs in one store) = query time

	Comments on f(number of triples in one graph) = query time

	Discarding queries

	Forking
	Result figure

	Discarding store in the benchmark
	Discarding Jena

	Discarding 4store

	Discarding IOMemory

	Discarding query 12b

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Reports

Benchmarking insert into triple stores

The kTBS structure

The kTBS hierarchy is as follows:

	a RESTful API speaks over HTTP to:

	the kTBS itself, it uses:

	rdflib [https://rdflib.readthedocs.org/en/latest/] for managing
the RDF parts, which in turn uses:

	stores, such as Sleepycat,
Virtuoso [http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/],
PostgreSQL (over
rdflib-sqlalchemy [https://github.com/RDFLib/rdflib-sqlalchemy])
and much more, for storing data.

Our first concern was about the rdflib and store stages. So we let alone
the kTBS and its HTTP layer in the first place.

In search of a good bench

Before implementing anything, we searched for existing benchmarks on
triple-stores and anything SPARQL related.

We found some interesting work:

	SP2Bench [http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/]
can make consistent set of an arbitrary number of triples, defines
some queries to test different scenari.

	BSBM [http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/]:
benchmarks in a e-commerce scenario.

	DBPSB [http://aksw.org/Projects/DBPSB.html]: SPARQL benchmark
using DBpedia [http://dbpedia.org/About].

	LUBM [http://aksw.org/Projects/DBPSB.html]: inference and
reasoning capabilities of RDF engines.

We settled for SP2Bench because we can use it to make graphs of
different sizes and it already defines interesting queries to benchmark
the store that handles the graphs.

Benchmarking triples insertion

The first task we did was to benchmark different stores for the
insertion of triples.

What we have: stores and triples

The stores we used are:

	Sleepycat

	Virtuoso [http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/]

	Jena [https://jena.apache.org/]/Fuseki

	4store [http://4store.org/]

	PostgreSQL (with
rdflib-sqlalchemy [https://github.com/RDFLib/rdflib-sqlalchemy]
and
rdflib-postgresql [https://github.com/RDFLib/rdflib-postgresql])

	SQLite (with
rdflib-sqlalchemy [https://github.com/RDFLib/rdflib-sqlalchemy]
and rdflib-sqlite [https://github.com/RDFLib/rdflib-sqlite])

	MySQL

We used a set of approximetly 32 000 triples.

What we found

This was the first experiment I did with RDFLib and various stores.
Therefore, it is prone to inaccuracy and I think that the tests should
be re-run for accurate time measures.

However, this experiment raised some interesting points and bugs.

Time measurement

There are different time measures: usr, sys, wall (also called
real).

We ended up choosing real because our goal is to know how much time a
user will wait. usr and sys times don’t seem to account for work
doing by the triple-store but only by the time spent in Python.

Bulk inserts are better than iterative inserts

If a store supports it, use bulk insertion with graph.addN(). It is
much faster. Another way of using graph.addN() is to parse a file in
memory in tempory graph mem, then load this graph into the one you
want: graph += mem. It will use addN().

Bug in rdflib-sqlachemy [https://github.com/RDFLib/rdflib-sqlalchemy]: addN() don’t write anything

Reported here: https://github.com/RDFLib/rdflib-sqlalchemy/pull/8

Slow bulk insertion with rdflib-sqlachemy [https://github.com/RDFLib/rdflib-sqlalchemy]

There is no real bulk insertion with rdflib-sqlachemy, as it commits for each triple. Reported here:
https://github.com/RDFLib/rdflib-sqlalchemy/issues/9 and https://github.com/RDFLib/rdflib/issues/357

Cannot insert blank nodes in sparqlstores

Fix provided by @pchampin [https://github.com/pchampin] as an
alternative SPARQLStore: bnsparqlstore.py. It converts blank nodes
to special URIs.

Insert time rises with respect to store size?

Only a suspicion for Sleepycat, needs real testing.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Reports

Benchmarking query capabilities for triple-stores

Context

After some experiments with Benchmarking insert into triple stores, we decided to refocus on
store queries because it is a widely used scenario for kTBS users.

The goal is to explore the capabilities of several triple stores for
different query types.

The queries we used are taken from
SP2Bench [http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php].

Results

Exploration

We first explored the different stores against the queries. Each store
had one graph of 500 triples. Queries ran anywhere from 5 ms to 5000 s
depending on the store and the query. Results here:
query32000_full.ods [https://github.com/ktbs/ktbs-bench/blob/master/bench_results/query32000_full.ods]
or in bench_results/query32000_full.ods.

It’s a bar plot: each bar is query for a store (resulting in nb queries
* nb store bars). The y-axis is the query time (real time). Tested
stores are:

	Virtuoso

	4store

	PostgreSQL

	Sleepycat

	In-memory

	Jena/Fuseki

Results also showed variation between runs. We decided to make more runs
to have a good idea of the mean and look at the standard variation to
see if the results were ok.

Changing perspective

We changed how we looked at results. We wanted to see the evolution of
query times against the number of triples in one graph, or the number of
graphs per store.

We also discarded some triple stores, see Discarding store in the benchmark.

Results:

	f(number of graphs in one store) = query
time [https://github.com/ktbs/ktbs-bench/tree/master/bench_results/figure_ngraph_store_1.pdf]

	f(number of triples in one graph) = query
time [https://github.com/ktbs/ktbs-bench/tree/master/bench_results/figure_ntriples_stores_1.png]

Comments on f(number of graphs in one store) = query time

We observe that all measures for 5 graph / store are greater than the
other ones. This lead us to dismiss these points.

For 4store there are only measures for 1 graph / store. When trying to
insert triples for 5 graphs / store in 4store, the computer started to
swap and never finished. A decision was made to stop testing this store.

For Sleepycat, Postgres and Virtuoso, most of the query times seem
to be constant with respect to the number of graph per store. Except for
a few queries like q2 and q12a for Sleepycat and Postgres, and q2, q3b,
q3c and q9 for Virtuoso.

We observe a weird behavior of Sleepycat and PostgreSQL on query
12a. This query is the same query as q5a, except q12a is a ASK and
q5a is a SELECT. It turns out that q12a takes longer than q5a. This
only appears on stores directly managed by RDFlib, which lead us to
think that it’s a bug in how RDFlib handles some ASK queries.

q2 acces large strings (abstract of articles), which is a reason why it
takes longer than the other queries.

Comments on f(number of triples in one graph) = query time

We tested the query times as function of the number of triples in one
graph in the stores: Sleepycat, PostgreSQL and Virtuoso.

The measures were:

	32000 triples

	256000 triples

	1000000 triples

For PostgreSQL, queries 2 and 12a were not done for 1m triples, as it
would have taken too much time.

For Sleepycat, all queries were not done for 1m triples. I was unable to
insert 1m triples in a Sleepycat store, running the insert for 1 day was
not sufficient. Plus, the python process was at state sleeping.
Another try at this should be done.

Queries for PostgreSQL are constant in times (except q2 and 12a). It
seems to be the same thing for Sleepycat, but we don’t have points for
1m triples. Both PostgreSQL and Sleepycat queries (except q2 and q12a)
are in the range 10-100 ms, which is acceptable.

Almost all Virtuoso queries are in the range 10-5000 ms. There are
greater variation between queries than with PostgreSQL and Sleepycat.
Further more, we don’t have a clear understanding of a how the queries
behave. We see that most queries takes more time when running on a 256k
triples graph than on a 32k triples graph. But most queries takes
approximately the same time, or even less time, when performing on 1m
triples than on 256k triples graph.

This tests should be run another time for more accurate and
understandable results. Additional points should be measured (64k, 128k,
512k, 700k triples / store).

Discarding queries

In order for the benchmarks to take less time, we removed some queries
that took a lot of time (q2, and q12a).

The queries left are: query all, q1, q3abc, q4, q5ab, q6, q7, q8, q9,
q10, q11, q12c.

Forking

Our goal was to simulate multiple user using kTBS by doing queries at
the same time. The benchmarks we did so far didn’t test that.

We decided to use
fork [https://en.wikipedia.org/wiki/Fork_(system_call)] to make
multiple parallel queries.

We first tried to do a fork around graph.query() call, but this
failed for Sleepycat as the open() call was done by the parent
process only once (see info on error in the Sleepycat memory error).

Therefore, we put the fork around
graph.open(); graph.query(); graph.close() to make it work with
Sleepycat.

We benchmarked this against Sleepycat for this configuration. Each
open/query/close query took around 1 s. But the open/close
was taking the whole time (~ 1 s for open/close and 0.01 s per
query). The benchmarks were not relevant, we were really
benchmarking the open/close and not what we were interested in:
the query.

To overcome this problem, we put together a lot of queries inside an
open/close. It looked like this cocktail:

	fork starts
	store open()
	Doing 50 times this:
	query all, q1, q3abc, q4, q5ab, q6, q7, q8, q9, q10, q11,
q12c

	store close()

	fork stops

Each fork took around 10 s (1 s for open/close and 9 s for the
queries). This time we were really benchmarking the queries rather than
the open/close.

Result figure

The figure that compares parallel queries (forks) vs. sequential queries
is
here [https://github.com/ktbs/ktbs-bench/tree/master/bench_results/fig_fork_vs_seq_cocktail_queries_mpoints.pdf].

On the x-axis is the number of queries in parallel (for forks, in green)
and the number of sequential queries (in blue). On the y-axis is the
time taken to run the cocktail of queries (see above).

We see that for a number of queries greater than or equal to 2, it is
more efficient to do parallel queries. There is a two-fold factor
between sequential queries and parallel queries.

Furthermore we see that there is only a tiny time difference between 1
fork and 2 forks, meaning that parallel queries really is best.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Reports

Discarding store in the benchmark

Discarding Jena

When doing the benchmark on each store with 1 graph of 32000 triples,
Jena proved to be very inefficient.

For query 4, it took around 1000 s. Some other queries took around 100
s. The total time taken by Jena in the benchmark is too high if we want
to make more tests with repetitions.

Discarding 4store

When doing the benchmark on each store with 5 graph of 32000 triples per
store, 4store began to swap on query 2.

The test was stopped when swap exceeded 3 Go.

Discarding IOMemory

IOMemory is not tested for store with more than one graph because it
can’t handle more than one graph.

Discarding query 12b

After discarding Jena and 4store, the last biggest query time was with
Postgres on query 12b. So this query was discarded for all store.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

Notes

	Sleepycat memory error
	The problem
	The solution

	Origin of the problem

	The second problem
	Solution

	Load RDF files in triple stores
	How to load rdf files into triple stores?
	Virtuoso

	Jena

	4-store

	Other stores (SQLAlchemy, etc.)

	Granting SPARQL privileges with Virtuoso

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Notes

Sleepycat memory error

The problem

When trying to do some benchmarks with Sleepycat, the following error
was raised:

Cannot allocate memory – BDB2034 unable to allocate memory for
mutex; resize mutex region

The solution

To solve this, go inside the Sleepycat database folder, and do a
db_recover.

Origin of the problem

The problem probably came from the lack of graph.close() after
opening a Sleepycat database in RDFLib with graph.open().

The second problem

Another error occured:

bsddb.db.DBRunRecoveryError: (-30973, ‘DB_RUNRECOVERY: Fatal error,
run database recovery – PANIC: Invalid argument’)

Solution

Same as before, run db_recover in the sleepycat folder.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Notes

Load RDF files in triple stores

How to load rdf files into triple stores?

Virtuoso

Using the isql command line interface. Then:

DB.DBA.RDF_LOAD_RDFXML_MT (file_to_string_output ('mydata.rdf'), '', 'http://graph_uri');

Note: the virtuoso server must be run in a location parent to the
directory containing mydata.rdf.

Jena

Use the cli s-put as:

s-put {data_store uri} {graph_uri} {data_file}

4-store

Use the cli 4s-import as:

4s-import {dataset_name} --model {graph_uri} {data_file}

Note: the http backend (4s-http) must not run at the same time.

Other stores (SQLAlchemy, etc.)

Use graph.parse() from RDFLib.

Note: this doesn’t seem to work for Virtuoso.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kTBS Bench 0.1 documentation

 	Notes

Granting SPARQL privileges with Virtuoso

Launch the virtuoso server.

Go to the conductor [http://localhost:8890/conductor/], then:

	System Admin

	User Accounts

	SPARQL, click edit.

	Account roles, put SPARQL_* in the Selected field.

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	kTBS Bench 0.1 documentation

bench.py: Automating benchmarks

A script to execute many benchmarks at once.

Run benchmarks.

	Usage:

	bench.py <bench_folder> [<output_folder>]

	Options:

	-h –help Show this help screen.

	
bench.scan_bench_files(directory)[source]

	Scan a directory for existing benchmark scripts.

	Parameters:	directory (str [http://docs.python.org/library/functions.html#str]) – path to the directory containing the benchmark scripts

	Returns tuple:	

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	kTBS Bench 0.1 documentation

 Python Module Index

 b

 			

 		
 b	

 	
 	
 bench	

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	kTBS Bench 0.1 documentation

Index

 B
 | S

B

 	

 	bench (module)

S

 	

 	scan_bench_files() (in module bench)

 Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_modules/bench.html

 Navigation

 		
 index

 		
 modules |

 		kTBS Bench 0.1 documentation »

 		Module code »

 Source code for bench

#!/usr/bin/env python
-*- coding:utf-8 -*-

"""Run benchmarks.

Usage:
 bench.py <bench_folder> [<output_folder>]

Options:
 -h --help Show this help screen.

"""
from docopt import docopt
from os import listdir, path
from sys import path as sys_path

[docs]def scan_bench_files(directory):
 """Scan a directory for existing benchmark scripts.

 :param str directory: path to the directory containing the benchmark scripts
 :returns tuple:
 """
 if directory is None:
 directory = '.'
 ldir = listdir(directory)
 res = filter(lambda f: f.startswith('bench_') and f.endswith('.py'),
 ldir)
 res = map(lambda f: path.join(path.abspath(directory), f),
 res)
 return res

if __name__ == '__main__':
 args = docopt(__doc__, version='bench 0.1')
 arg_bench_folder = args['<bench_folder>']

 for bench_file in scan_bench_files(arg_bench_folder):
 sys_path.append(path.dirname(bench_file)) # Add script directory to sys.path in case of imports
 execfile(bench_file)

 © Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		kTBS Bench 0.1 documentation »

 All modules for which code is available

		bench

 © Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		kTBS Bench 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Vincent.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

